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LE'ITER TO THE EDITOR 

Two-step renormalisation group approach for randomly 
diluted Ising models? 

Luiz R Evangelista and V K Saxena 
Departamento de Fisica, Universidade Estadual de Maringi, Caixa Postal 331, 87100 
Maringi Parana, Brazil 

Received 19 February 1985 

Abstract. A two-step renrmnalisation group approach-a Migdal-Kadanoff (or decimation) 
transformation (MK) followed by a mean-field renormalisation group (MFRG)-has been 
applied to random bond king models on d-dimensional hypercubic lattices. Calculations 
of the critical couplings and percolation concentrations for two and three dimensions show 
much improvement, even for small size clusters, compared with the results of separate M K  

or MFRG calculations. Critical exponents vT and vp are also improved in some cases. 
Estimates of critical curves in the concentration-temperature plane are also obtained for 
the two- and three-dimensional models. 

Various approximate real-space renormalisation group ( RG) methods have been 
developed to study the critical behaviour of pure and random spin systems (see 
Burkhardt and van Leeuven (1982) for reviews and detailed references). In some cases 
these methods give approximate results for the critical properties of the systems, but 
in general they are poor compared with known exact results. Some of the very 
commonly used methods for the Ising models are the Migdal-Kadanoff ( M K )  transfor- 
mations (Migdal 1976, Kadanoff 1976), the decimation methods (Barber 1975, Nelson 
and Fisher 1975, Kadanoff and Houghton 1975, Young and Stinchcombe 1976) and 
the recently proposed mean-field renormalisation group ( MFRG) method (Indekeu et 
a1 1982). In all these cases the results can be improved to some extent by considering 
large-size cells, which involve lengthy calculations and slow convergence. 

The MK or decimation methods consider only the interactions among the spins of 
a finite cluster, neglecting the effect of the surrounding spins and thus underestimating 
the interactions among the spins, which leads to a lower value of critical temperature. 
When applied to diluted systems these methods lead to a higher value of the percolation 
or critical concentration as a consequence of the underestimation of the interactions. 
On the other hand, in MFRG the interactions within the cluster are treated exactly and 
the effect of the neighbouring spins is taken into account in terms of a mean field 
acting on each spin of the cluster. This effectively leads to an overestimation of the 
interactions among the spins, giving a higher value of the critical temperature and a 
lower value for the critical concentration for the diluted system. 

Recently de Alcantara Bonfim et a1 (1984) have presented a two-step renormalisation 
group method, combining the MFRG and decimation methods, and have applied it to 
pure Ising models on various lattices. This method compensates for the contrary effects 
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of the two methods used, thus leading to substantial improvements both in critical 
couplings and exponents. However, application of the method of de Alcantara Bonfim 
et a1 is limited to systems with only one parameter space, e.g. pure Ising models, etc. 
As the first step of this method, i.e. MFRG, leads to a single approximate recursion 
relation (Indekeu et a1 1982, Droz et a1 1982, Plascak 1984a, b)  among the various 
parameters of the Hamiltonian, it is not possible to apply it directly to systems with 
two or more parameters. This is because separately defined parameters (i.e. a number 
of recursion relations equal to the number of parameters of the Hamiltonian) are 
needed in order to apply, in the second step, a decimation or M K  transformation to 
the renormalised lattice obtained through the application of MFRG in the first step. 
However, if the order of application of the two steps is reversed, a decimation or M K  

RG followed by MFRG, it would be possible to realise a two-step renormalisation group 
procedure for systems with two or more parameters, such as a randomly diluted Ising 
model. 

In this letter we apply a two-step RG method to random bond-diluted Ising models 
on d-dimensional hypercubic lattices. In this method we first apply a M K  (or decimation 
in two dimensions) method, obtaining two separate recursion relations for the renor- 
malised couplings and renormalised concentration of bonds (Jayaprakash et a1 1978, 
Yeomans and Stinchcombe 1979). This renormalised lattice is then treated within the 
MFRG, from which a single approximate recursion relation is obtained for the final 
renormalised parameters in terms of the original lattice parameters. This final recursion 
relation is used to study the critical properties of the system. 

In order to illustrate our approach we consider a bond-diluted Ising model on a 
d-dimensional lattice, with an effective Hamiltonian 

X = K&S, , 
where Si = *l are the Ising spins. The nearest-neighbour couplings, defined by K,  = 
Jii/  kT, are random variables, having a probability distribution 

P (  K,) = pa( K, - K )  + ( 1  -p)6(  K,) (2) 

where p is the concentration of bonds and K is the coupling of the pure system. In 
the first step of our approach we apply the M K  transformation (Jayaprakash et a1 1978) 
to the cells of linear size b,, ( b ,  + spins (we shall be taking b, = 2). This leads to 
the following recursion relations for the renormalised concentration p’ and coupling K ’: 

p’=1-(1 - p 2 ) f i  (3) 

p’K‘= ip2f i  In(cosh2K) (4) 
where 

fi = b ( d - 1 )  
1 .  

In the second step we apply the MFRG to the renormalised lattice defined by the 
parameters ( p ’ ,  K’). In this method (Indekeu et a1 1982) one compares the two clusters 
of different sizes, with a scaling factor of b2 = ( N / N ’ ) ” d ,  N and N ’  being the number 
of spins in the two clusters and N > N‘.  The interactions of the neighbouring spins 
are simulated by a mean field acting on each spin of the cluster and the RG 

transformation is realised by considering the magnetisations of the clusters to scale in 
the same way as their respective surrounding mean fields. Realising this transformation 
for the case of one-spin ( N ’ =  1 )  and two-spin ( N  = 2) clusters gives the following 
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single recursion relation for the renormalised parameters ( p ” ,  K ” )  in terms of ( p ’ ,  K ’ ) :  

( 5 )  
exp(2K’) 

exp(2K’)+ 1’ 
2dp”K”=p’( l  -p‘)(2d - l)Kf+2(p’)’(2d - 1)K‘ 

Substituting p’  and K ’  from equations (3) and (4) gives the following final single 
approximate recursion relation for the renormalised parameters ( p ” ,  K ” )  in terms of 
the original parameters ( p ,  K ) :  

2 dp”K ” = f 6 p  ’( 2 d - 1 ) ( 1 - p’)  ’ In (cosh 2 K ) + &I ’ (2 d - 1 )[ 1 - ( 1 - p ’) “1 
(cosh 2K)q  

(cosh 2K)q + 1 
x ln(cosh 2 K )  

where 

q = E p ’ / [  1 - ( 1 - p ’ )  “I. (7)  

The effective final scaling parameter for the present method is b = blbz. It is easy to 
see from equation (6) that at the pure Ising fixed point ( p  = 1)  the criitcal coupling is 
defined by 

- (2d  - 1)  (cosh2K)” 
K “  = D- In(cosh 2K)  

2d (cosh2K)’+ 1‘ 

On the other hand, at the percolation fixed point ( K  = CO) the critical concentration 
is given by 

(2d-1) - 
Dp2[2-(1 - p ’ ) ” ] .  

= 2d (9) 

Linearising the recursion relation, equation (6),  around the fixed points gives the 
critical exponents vT and vp through the relation 

where p can be K or p .  
We used equations (6)-(9) to calculate the critical couplings, critical concentrations 

and exponents for 2~ and 3~ bond-diluted Ising models. Besides the one-spin and 
two-spin clusters (bZ=(2)”d )  in the second step (MFRG) of our approach, we also 
considered the four-spin clusters ( b 2  = ( 4 ) ” d ) .  The results of our calculations for 2~ 

and 3~ lattices for various scaling parameters b are presented in tables 1 and 2 
respectively. It is clear from the tables that our approach gives better values for the 
critical couplings K ,  and critical concentrations pc ,  closer to the known exact or series 
results, compared with separate M K  or MFRG methods. It is worth mentioning that, 
without considering large-size cells, in the present method it is possible to obtain very 
good estimates for the critical properties of the system under consideration. The values 
of the critical exponents are also improved in some cases, particularly in two dimensions. 
The best estimates for the critical couplings and critical concentrations are obtained, 
as also found by de Acantara Bonfim et al, for the most symmetric clusters considered 
in the MFGR part of the two-step RG method. 

Although in the present RG method it is not possible to determine the complete 
renormalisation flow in the parameter space of the Hamiltonian, equation ( l ) ,  because 
of the single recursion relation, equation (6), one can estimate the phase boundary in 
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Table 1. Critical points and exponents for the ZD bond-diluted k ing  model on a square 
lattice. 

Method 

Pure king fixed-point Percolation fixed-point 

b K' V T  pc VP 

MFRG J 2  
J 4  

M K  (decimation) 4'2 

Two-step RG (OUT J 4  
method) w' 8 

v'8 
d l 6  

Exact results 

0.346 
0.360 

0.609 
0.609 
0.536 
0.536 
0.506 
0.506 

0.441" 

I .667 
1.440 

0.669 
1.337 
0.883 
1.325 
0.966 
1.288 

1 

0.333 
0.354 

0.6 18 
0.618 
0.475 
0.475 
0.468 
0.468 

0.5b 

1.553 
1.398 

0.8 18 
1.635 
0.757 
1.136 
0.893 
1.190 

1.34' 

a Onsager (1944). 
Sykes and Essam (1964). 

E Wallace and Young (1978). 

Table 2. Critical points and exponents for the 3~ bond-diluted k ing  model on a simple 
cubic lattice. 

Method 

Pure lsing fixed-point Percolation fixed-point 

b K ,  VT pc VP 

MFRG 2'13 0.203 1.025 0.2 1 .o 
4'" 0.205 0.925 0.203 1.372 

MK 2 0.261 1.068 0.28 1.23 
Two-step RG (our (16)'13 0.252 1.12 0.246 1.086 
method) (32)'13 0.246 1.13 0.243 1.13 
Exact (series) results 0.221" 0.64b 0.25' 0.82d 

a Pawley et a/ (1983). 
Fisher and Burford (1967). 
Sykes et a/ (1976). 
Dunn et al (1975). 

the concentration (p)-temperature ( T = K - ' )  plane using the fixed point relation, i.e. 
equation (6) with p " = p  and K " =  K (for a discussion see Droz et a1 1982, Plascak 
1984a, b). Figure 1 shows our results for the critical curves in the pK- '  plane for 
the 2~ and 3~ models, with a scaling factor b = 48. One can also estimate the limiting 
slope 

of the critical curve at the Ising fixed point. For the 2~ lattice, with a scaling factor 
b =48, we get a value of 1.3 which is close to the exact result of Harris (1974), 1.329, 
compared with the value obtained by the decimation method 1.377 (Yeomans and 
Stinchcombe 1979). 
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Figure 1. Critical curves for the 2D (-, b =J8) and 313 ( - - - ,  b = (16)”3) lattices. 

It should be noted that the basic principle of the MFRG (Indekeu et a1 1982), and 
consequently of the present TSRG, is very similar to that of the well known phenomeno- 
logical finite-size scaling method (Nightingale 1976, 1977), in which a single renormali- 
sation recursion relation is obtained through the scaling of correlation length and is 
used to estimate the phase diagram and critical properties. Furthermore, the present 
RG method is free from the proliferation problem, as is also the case with the finite-size 
scaling method, contrary to the conventional microscopic RG methods. 

In conclusion we have presented a two-step renormalisation group approach and 
applied it to the random bond Ising model, considerably improving the results for 
critical properties, even for small-size clusters, compared with other frequently used 
real space renormalisation group methods. It should be noted that our method is very 
general and can be applied to any other system with two or more parameters in the 
Hamiltonian. We are applying this method to some other systems of interest and hope 
to publish the results in the near future. 
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